Search

Wednesday, July 20, 2011

Theories of interplanetary rocketry


Theories of interplanetary rocketry

At the beginning of the 20th Century, there was a burst of scientific investigation into interplanetary travel, largely driven by the inspiration of fiction by writers such as Jules Verne and H.G.Wells. Scientists seized on the rocket as a technology that was able to achieve this in real life.
In 1903, high school mathematics teacher Tsiolkovsky published the first work on space travel, which was inspired by the writings of Jules Verne
At the beginning of the 20th Century, there was a burst of scientific investigation into interplanetary travel, largely driven by the inspiration of fiction by writers such as Jules Verne and H.G.Wells. Scientists seized on the rocket as a technology that was able to achieve this in real life.
In 1903, high school mathematics teacher Konstantin Tsiolkovsky (1857–1935), published The Exploration of Cosmic Space by Means of Reaction Devices, the first serious scientific work on space travel. The Tsiolkovsky rocket equation—the principle that governs rocket propulsion—is named in his honor (although it had been discovered previously). He also advocated the use of liquid hydrogen and oxygen for propellant, calculating their maximum exhaust velocity. His work was essentially unknown outside the Soviet Union, but inside the country it inspired further research, experimentation and the formation of the Society for Studies of Interplanetary Travel in 1924.
In 1912, Robert Esnault-Pelterie published a lecture on rocket theory and interplanetary travel. He independently derived Tsiolkovsky's rocket equation, did basic calculations about the energy required to make round trips to the Moon and planets, and he proposed the use of atomic power (i.e. Radium) to power a jet drive.

In 1912 Robert Goddard, inspired from an early age by H.G.Wells, began a serious analysis of rockets, concluding that conventional solid-fuel rockets needed to be improved in three ways. First, fuel should be burned in a small combustion chamber, instead of building the entire propellant container to withstand the high pressures. Second, rockets could be arranged in stages. Finally, the exhaust speed (and thus the efficiency) could be greatly increased to beyond the speed of sound by using a De Laval nozzle. He patented these concepts in 1914. He, also, independently developed the mathematics of rocket flight.
In 1920, Goddard published these ideas and experimental results in A Method of Reaching Extreme Altitudes. The work included remarks about sending a solid-fuel rocket to the Moon, which attracted worldwide attention and was both praised and ridiculed.

========================================================================
For details, please visit http://en.wikipedia.org/wiki/Rocket

No comments:

Post a Comment